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1.  Introduction

Bark beetle outbreaks are a major disturbance of 
forests throughout western North America a�ect-
ing ecological processes and social and economic 
values (Amman 1977, Bond and Keeley 2005). Since 
the 1990s, bark beetle outbreaks have a�ected 
between 1.1 and 13.5 million acres in the western 
United States and an additional 13.5 million acres in 
British Columbia (Meddens et al. 2012). Tree mortal-
ity resulting from bark beetles has a�ected lodge-
pole pine, ponderosa pine, spruce-�r, Douglas-�r 
and pinyon pine forest types (Figure 1). The extent 
of the recent tree mortality due to bark beetle 
outbreaks has led to increased scienti�c, manage-
ment and public interest in the implications of bark 
beetle-caused tree mortality for the behavior of 
subsequent wild�res.

Successful bark beetle attacks result in the disrup-
tion of tree physiological function, eventually lead-
ing to loss of moisture from the canopy foliage and 
a change in needle color from green to red (Figure 
2). This “red phase” can last for 1 to 4 years, depend-
ing on tree species and environmental conditions. 
Over time the needles begin to drop to the ground, 
eventually resulting in the complete loss of canopy 
foliage. This second phase, which may last up to a 
decade after the bark beetle attack, is often referred 
to as the “gray phase.” Ultimately the dead branches 
and trees fall to the ground and the “old phase” can 
persist for decades following bark beetle-caused 
mortality. Changes in the fuels complex following 
bark beetle-caused mortality have been character-
ized for lodgepole pine and spruce-�r dominated 
forests (Page and Jenkins 2007a, Page and Jenkins 
2007b, Jenkins et al. 2008, Derose and Long 2009, 
Klutsch et al. 2011, Schoennagel et al. 2012, Simard 
et al. 2011), pinyon-juniper woodlands (Cli�ord et 
al. 2008), ponderosa pine forests (Ho�man et al. 
2012a) and Douglas-�r forests (Donato et al. 2013).

In general, compared to pre-outbreak green phase 
forests, bark beetle-a�ected forests in the red phase 
are expected to be at higher risk for the transition of 
surface �res into the canopy, followed by the 
spread of �res through the canopy.  This height-
ened risk of crown �re is expected to decrease 
during the gray phase  (Jenkins et al. 2008, Hicke et 
al. 2012). 
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Figure 1: Landscape-scale bark beetle-caused mortality in 
ponderosa pine on the Prescott National Forest, AZ (top image;  
courtesy of Joel McMillin, USDA Forest Service Region 3 Forest 
Health and Protection), ponderosa pine/mixed conifer forests on 
the Arapaho-Roosevelt National Forest, CO (middle image;  
courtesy of Chad Ho�man and LightHawk), and lodgepole pine 
and spruce-�r forests on the Deschutes National Forest, OR 
(bottom image; courtesy of Chad Ho�man).  

There is disagreement between studies, however, 
over the direction and magnitude of the e�ect of 
bark beetle mortality on potential �re behavior, 
particularly during the red phase (e.g. Simard et al. 
2011). In addition, there are several gaps in our 
current knowledge that must be overcome in order 
to develop a generalizable framework that 
describes the e�ect of bark beetle mortality on 
potential �re behavior (Hicke et al. 2012).



Figure 2. Representation of temporal phases following bark beetle-caused tree mortality at the individual 
tree and stand scales. These images were developed with the FUEL3D fuel simulation model.

Scientists have identi�ed three ways in which bark 
beetles can a�ect �re behavior: 1) changes in the 
state, amount, and distribution of surface and 
canopy fuels; 2) changes in fuel moisture and 
chemical composition; and 3) alterations in micro-
climatic in�uences on �re behavior such as wind 
velocity, direction and turbulence within stands. In 
this technical note, we describe the development 
and application of physics-based computer models 
for characterizing these e�ects and evaluating their 
interactions. Our purpose is to better familiarize �re 
and land managers with physics-based �re behav-
ior models, and to illustrate their potential uses and 
bene�ts in addressing �re behavior in rapidly 
changing forest environments a�ected by bark 
beetle outbreaks. A key aspect of making these 
models more useful to managers is helping manag-
ers better understand the types of questions that 
they can pose for study with these tools, thus guid-
ing researchers to the most relevant problems.  
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2.  Why physics-based �re behavior 
modeling?
Due to the risks and di�culties in measuring fuel  
characteristics, environmental conditions, and �re 
behavior in bark beetle-a�ected stands before and 
during a �re, most studies have used simulation 
models to explore how changes to fuel complexes 
as a result of beetle attacks might in�uence the 
behavior of subsequent wild�res (Hicke et al. 2012, 
Jenkins et al. 2012). However, operational �re 
behavior modeling systems commonly used in the 
U.S. cannot fully account for the spatial patterns of 
the fuels or all of the interactions between the fuels, 
environmental conditions, and the �re. These 
simpli�cations in commonly applied operational 
models have historically been for the sake of simpli-
fying model development, reducing complexity of 
input parameters, or reducing computational costs. 
These drivers precluded the solution of complex 
equation sets based on the assumption that fuels, 
winds, and environmental conditions (such as 
topography) are constants, as formulated by 
Rothermel (1972, 1991) for surface and crown �re 
rates-of-spread, and Van Wagner (1977) for crown 
�re ignition and spread criteria. 
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3.  What we are learning from physics- 
based models:

3.1 Level of tree mortality a�ects potential 
�re behavior

Using fuels data from 11 locations in central Oregon 
and Idaho to populate WFDS, Ho�man et al. (2012b, 
2013) examined how the level of mountain pine 
beetle-induced lodgepole pine mortality in�u-
enced potential �re behavior during the red phase. 
All simulations were conducted under moderate 
conditions where the wind speed averaged 4.5 
mph at 20 ft above the ground, and the surface �re 
spread and intensity were 19.8 ft min-1 (0.1 m s-1) 
and 72 btu ft-1 s-1 (250 kW m-1), respectively. Using 
the same 11 lodgepole pine stands and wind veloci-
ties, Ho�man et al. (2013) investigated the relation-
ship between the level of bark beetle-caused 
mortality and potential �re behavior for three 
di�erent levels of surface �re intensity (36, 72, and 
144 btu ft-1 s-1 or 125, 250 and 500 kW m-1) across 
�ve levels of bark beetle-caused mortality (0, 25, 55, 
75, 100%). The �reline intensities simulated by Ho�-
man et al. (2012b, 2013) represent surface �res that 
could be suppressed by �re resources with hand 
tools for the low intensity simulations, while the 
moderate and high intensity simulations represent 
�res that could not be suppressed with hand tools.   

Ho�man et al. (2012b) found that the simulated 
amount of canopy fuel consumption and the crown 
�re intensity were both positively related to the 
level of lodgepole pine mortality during the red 
phase, and that the predicted consumption and 
intensity at all levels of mortality above 10% were 
signi�cantly di�erent than the pre-outbreak 
scenarios (Figure 3). However, while both canopy 

Such assumptions are particularly questionable in 
bark beetle-a�ected areas typically characterized 
by a complex mixture of dead and live canopy fuels. 
Further, Cruz and Alexander (2010) suggested that 
predictions based on the linkages between Rother-
mel (1972, 1991) and Van Wagner (1977) equations 
tend to under-predict crown �re hazard.  Thus, 
operational �re behavior modeling systems are 
signi�cantly limited in their ability to address 
current knowledge gaps, such as the e�ect of 
various levels and rates of beetle-induced mortality 
on the �re environment and associated potential 
�re behavior.     

Recently developed physics-based �re behavior 
models such as HIGRAD/FIRETEC (Linn 1997) and 
the Wildland-Urban Interface Fire Dynamics Simula-
tor (WFDS, Mell et al. 2009) provide alternative 
modeling frameworks that account for, to some 
approximation, the major physical processes that 
in�uence �re behavior. These models enable 
approximation of the three-dimensional spatial 
structure of the fuels complex, as well as the inter-
action between the fuels complex, wind �ow and 
the �re over space and time. This approach allows 
the constantly changing, interactive relationship 
between the �re, the environment, and fuels to be 
simulated with coupled �re-atmosphere dynamics.  
FIRETEC and WFDS were developed as research 
tools and require considerable computational 
resources and computer simulation time.  These 
models can have substantial input data require-
ments to describe fuels complexes in three dimen-
sions, and require users to have a working knowl-
edge of �uid dynamics, thermodynamics, combus-
tion and heat transfer.  

Both WFDS and FIRETEC have received varying 
levels of model validation and evaluation. Recent 
studies include comparisons to measured wind 
�ow through forest stands (Pimont et al. 2009, 
Mueller 2012), experimental prescribed �res (Linn 
et al. 2005, Linn and Cunningham 2005, Mell et al. 
2007, Linn et al. 2012), and experimental laboratory 
�res (Mell et al. 2009, Castle et al., 2013).  In addition, 
a considerable number of validation studies have 
been completed for FDS (Fire Dynamics Simulator), 
the parent model of WFDS (McGrattan et al. 2010), 
for �re protection engineering applications. 

3

Although physics-based models have not received 
full validation across a wide  range of observed �re 
behavior and environmental conditions, especially 
in bark beetle-a�ected areas, they can produce 
realistic �re behavior (Linn et al. 2013). However, it is 
important to remember that physics-based models 
still require a number of simpli�cations of a very 
complex reality, and should be interpreted and 
used with caution. E�orts to further validate both 
WFDS and FIRETEC using �eld and laboratory data 
sets are ongoing.



Ho�man et al. (2013) suggested that bark beetles 
have a larger e�ect on subsequent �re behavior 
during the red phase when the pre-outbreak 
surface �re intensity is not large enough to result in 
crown ignition in the pre-outbreak stand. They 
further suggested that �re behavior during the red 
phase may not always show increased canopy fuel 
consumption or crown �re intensity compared to a 
�re under the same conditions in the pre-outbreak 
forest.

The �ndings of Ho�man et al. (2012b, 2013) agree 
with other theoretical relationships based on simu-
lation modeling (Jenkins et al. 2008, Hicke et al. 
2012), as well as with laboratory-scale studies, 
which indicate that reduced foliar (needle) moisture 
content increases �ammability (Xanthopoulos and 
Wakimoto 1993, Dimitrakopoulos and Papaioan-
nou 2001, Liodakis and Kakardakis 2008, Babraus-
kas 2008, Jolly et al. 2012).  Although there is limited 
quantitative data from actual forest �res burning in 
lodgepole pine forests during the red phase, an 
increase in crown �re activity particularly under 
moderate burning conditions has been observed in 
recent years (Wildland Fire Lessons Learned Center 
2012). 

fuel consumption and crown �re intensity tended 
to increase as the level of tree mortality increased 
during the red phase, Ho�man et al. (2013) found 
that the slope of the relationship was dependent 
upon the surface �re intensity. 

Taken together, the results from Ho�man et al. 
(2012b, 2013) suggest that crown �re intensity and 
canopy fuel consumption both increase during the 
red phase. However, the magnitude of these 
increases depends on the level of tree mortality and 
the surface �re intensity; changes in �re behavior 
between pre-outbreak and red-phase fuels were 
most pronounced when surface �re intensities 
were simulated with moderate and low surface �re 
intensities (Ho�man et al. 2013). At high surface �re 
intensities, mortality level had little e�ect on subse-
quent crown �re behavior because the relative 
di�erences between crown �res with and without 
beetle kill were fairly subtle. 

Figure 3. WFDS simulations through time for 0%, 40% and 80% mortality during the red phase in a lodgepole pine- 
dominated forest under moderate environmental conditions. Time proceeds from left to right in all three cases. 
Simulations show a clear increase in crown �re activity and total fuel consumption as the level of mortality increases.
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3.2 Bark beetle-caused tree mortality 
in�uences on wind �ow and potential �re 
behavior

Linn et al. (2013) used HIGRAD/FIRETEC to explore 
the e�ects of bark beetle-caused tree mortality on 
within-stand wind �ow patterns and the associated 
�re behavior in pinyon-juniper woodlands of the 
southwestern United States.  Using fuels data 
collected in the �eld, they simulated the wind �ow 
and �re behavior for pre-outbreak (no mortality) as 
well as red and gray attack phases with two di�er-
ent open wind speeds that were used to represent 
moderate conditions. Their stand was simulated to 
represent an area with high pre-outbreak tree 
density (405 trees per acre) and high levels of 
pinyon tree mortality from bark beetles (77% of the 
trees in the stand). 

The loss of pinyon needles in the tree canopies 
during the gray phase resulted in an increase in the 
within-canopy wind �ow and turbulence, and 
altered vertical wind �ow pro�les (Figure 4). 
Because Linn et al. (2013) simulated the red phase 
as one in which all needles of dead trees remained 
in the overstory canopy, there were no di�erences 
in wind �elds between the pre-outbreak and red 
phases.

In addition to changes in the wind �ow, Linn et al. 
(2013) also found that the predicted �re rates-of-
spread were between 1.8 and 2.6 times faster 
during the red phase as compared to the 
pre-outbreak green phase (Figure 5).

The gray phase simulations also showed  increased 
rates-of-spread and heat release rate compared to 
the pre-outbreak scenario. However, as Linn et al. 
(2013) point out, the raw simulations combine the 
e�ects of both the altered wind �ow and altered 
fuels complex. Further analysis suggested that the 
rates-of-spread were 13.5 percent less during the 
gray phase as compared to the pre-outbreak simu-
lations when the e�ect of altered within-canopy 
wind velocity was considered. Thus, Linn et al. 
(2013) suggested that changes in wind �ow may 
have a larger e�ect on �re rate-of-spread than the 
altered fuels during the gray phase, at least for 
pinyon-juniper woodlands. 

Figure 5. FIRETEC simulations from Linn et al. (2013) showing the �re perimeter and fuel consumption through time 
for the green, red and gray phases with a 27 mph 20 ft open wind for a pinyon-juniper woodland impacted by a 
pinyon Ips bark beetle outbreak.  Time proceeds from left to right in all three cases.
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Figure 4. Changes in simulated wind �ow for the 
pre-outbreak (green phase) and the gray phase for the 
high wind speed scenarios in pinyon-juniper wood-
lands, adapted from Linn et al. (2013).
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Figure 6. Example simulated spatial point patterns from Ho�man et al. (2012b and 2013) for a lodgepole 
pine-dominated stand with 404 trees per acre.
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Based on their simulation results, Linn et al. (2013) 
suggested that in sparse, heterogeneous fuels such 
as those found in the pinyon-juniper woodlands, 
bark beetle-caused tree mortality a�ects �re rate-
of-spread by decreasing the canopy needle mois-
ture content during the red phase, and increasing 
within-canopy and above-canopy wind speeds 
during the gray phase. Although there are few data 
from actual �res in bark beetle-a�ected areas for 
comparison, the increases in rates-of-spread found 
by Linn et al. (2013) during the red phase do com-
pare well with values estimated by Alexander and 
Cruz (2013), who suggested an increase in the rate- 
of-spread of between 2.5 and 3.6 times the 
pre-outbreak scenario. 

3.3 Tree spatial patterns in�uence poten-
tial �re behavior in bark beetle-a�ected 
stands

In addition to evaluating the potential e�ects of 
various levels of mortality, the e�ects of various 
overstory tree spatial patterns, and thus various 
mortality patterns, can also be investigated.  Ho�-
man et al. (2012b) simulated �re behavior in lodge-
pole pine-dominated forested stands using WFDS 
with several di�erent spatial arrangements of trees 
(Figure 6) .  These simulations were conducted using 
the same stand level data from central Oregon and 
Idaho and were simulated using the same moder-
ate surface �re and wind �ow conditions as 
reported in Ho�man et al. (2012b).   
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Investigations concerning the roles of spatial com-
plexity on �re-fuel-atmosphere interactions and 
resulting �re behavior are not possible with current 
operational tools because they are not designed to 
account for heterogeneous spatial density of trees, 
or the signi�cant e�ect that spatial tree arrange-
ment has on the winds that penetrate the canopy 
and push the winds.  By changing the tree arrange-
ment, the local crown continuity is changed as well 
as the winds that push both ground and crown �res 
(Pimont et al. 2009, 2011).  The physics-based 
models that couple �re-atmosphere dynamics 
provide the ability to examine the sensitivity of 
these heterogeneous e�ects of tree spacing and 
mortality arrangement, thus providing insight for 
managers and the development of future opera-
tional tools.  

During the red phase in the Ho�man et al. (2012b) 
study, simulations show that canopy fuel consump-
tion and crown �re intensity were between 10 and 
16% greater for aggregated or clumpy tree arrange-
ments compared to random and homogeneous 
arrangements (Figure 7).  These results suggest that 
the spatial pattern of overstory trees can also in�u-
ence the e�ect of bark beetle caused-tree mortality 
on �re behavior. However, further studies that 
investigate the interactions between tree spatial 
patterns, within-canopy wind �ow and �re behavior 
are needed.



Although there are no investigations of the role of 
spatial pattern on potential �re behavior during the 
gray phase, Linn et al. (2013) suggested that the 
e�ect of altered canopy fuels on within-canopy 
wind �ow may be a driving factor in determining 
�re behavior during the gray phase. While research 
investigating the e�ect of spatial pattern on �re 
behavior is in its infancy, several other recent mod-
eling studies have also shown that there are com-
plex interactions between spatial pattern, wind 
�ow, and �re behavior (Parsons 2007, Pimont et al. 
2011, Linn et al. 2013). Additional research and 
simulations are needed to better understand the 
potential in�uence of tree spatial pattern and fuel 
heterogeneity on �re behavior.  

4.  Conclusions

Physics-based �re behavior models are useful for 
exploring the potential ways that a mosaic of live 
and dead fuels resulting from bark beetle-induced 
tree mortality in�uences coupled �re-atmospheric 
interactions, and the resulting potential �re behav-
ior. Both WFDS and FIRETEC have undergone some 
level of validation and evaluation; however, no 
systematic comparison has been conducted 
between the results of either physics- or 
operational-based �re behavior models with 
experiments or observations from �res burning in 
areas that have been impacted by bark beetles. 

Figure 7. In�uence of 
overstory tree spatial 
pattern on the proportion 
of canopy fuel consump-
tion and the mean �reline 
intensity from WFDS 
simulations in lodgepole 
pine-dominated forests 
(Ho�man et al. 2012b).
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Nonetheless, the results from models such as WFDS 
and FIRETEC can be reasonably used to suggest 
possible ways that interactions between physical 
phenomena across various fuels complexes and 
environmental conditions in�uence potential �re 
behavior (Linn et al. 2013). Results from the applica-
tion of physics-based models involving bark 
beetle-caused tree mortality suggest the following:  

1)  The potential �re behavior in post-outbreak 
beetle a�ected forests is sensitive to the level of 
tree mortality and the spatial pattern of the dead 
trees. 

2)  The e�ect of bark beetle-caused tree mortality 
on subsequent �re behavior during the red phase, 
when dead needles cling to the trees, varies with 
surface �re intensity. The largest in�uence of bark 
beetle-caused tree mortality may occur under 
moderate burning conditions that result in surface 
�re intensities that are just below the threshold for 
crown �re ignition in pre-outbreak forests. 

3)  The reduction in canopy biomass associated 
with the gray phase, when dead needles have fallen 
to the ground, can result in greater wind penetra-
tion into the canopies, thus increasing within-
canopy wind speed and turbulence. These changes 
can cause an increased �re rate-of-spread in gray 
phase stands compared to pre-outbreak �re behav-
ior, especially in patchy, mixed-fuel forest types 
such as pinyon-juniper woodlands.



4) Increases in �re behavior (such as rate-of-spread, 
�reline intensity and fuel consumption) can occur 
in both the red and gray phases relative to 
pre-outbreak conditions, depending upon the level 
of tree mortality, the wind speed, and the surface 
�reline intensity generated by the combustion of 
the surface fuels. 

Although physics-based models have been useful 
for further exploring the potential interactions 
between bark beetle-in�uenced fuels complexes, 
atmospheric processes and potential �re behavior, 
many key gaps remain in our understanding of 
beetle and �re interactions (Hicke et al. 2012). Fire 
behavior modeling systems will likely remain an 
important aspect of future research investigating 
bark beetle-�re interactions, but there is a need for 
further case-study evaluation, and for well-
quanti�ed operational and experimental �res in 
bark beetle-a�ected forests. Data from additional 
case studies and operational and experimental �res 
could provide a means of validating hypotheses 
generated from simulation experiments such as the 
ones highlighted here.  Case studies could also 
improve our understanding of the conditions under 
which various �re behavior models do and do not 
perform well, which would help with further devel-
opment of new empirical and physical models. 

Given that physics-based models were designed as 
research tools, have large input data requirements 
and computational costs, and require specialized 
expertise to conduct simulations, it is unlikely that 
they will replace operational models which are 
designed to run faster than real time and require 
minimal inputs. However, physics-based models 
can assist managers by o�ering insights into how 
and why bark beetle-caused tree mortality a�ects 
forest �re behavior in ways that operational models 
do not. For example, these models can provide 
insights into how �res might behave under �uctu-
ating winds compared to steady conditions, or in 
mixtures of varying fuel moistures compared to 
average conditions, or in areas with clumpy tree 
mortality and complex topography. Untapped 
opportunities exist for collaboration between 
physics-based �re scientists and managers to �eld-
test models and advance scienti�c and practical 
understanding of �res in forests with many bark 
beetle-killed trees. 
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